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Unusual phase properties of the Zrsymmetric quartet FCC 
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Received 6 May 1982 

Abstract. A ZN-symmetric theory with four-spin interactions on a three-dimensional FCC 
lattice is analysed. The model possessesan unusual semi-local symmetry and is self-dual. For 
N < N , =  5 it undergoes a single, first-order transition, whereas for N 3 N ,  it exhibits two 
continuous transitions which may 01 may not be infinite order. The intermediate phase 
appearing between the ferromagneticordered and disordered phases for A' 3 N ,  is a massless 
phase with no long-range order. The theory has a charged gas representation in which the 
charges describe, in a peculiar way, topological excitations of the system and are subject to 
novel semi-global neutrality conditions. These charges interact through a two-body 
potential which is anisotropic and asymptotically proportional to the square of the logarithm 
of the separation between the charges. The behaviour of the theory is strongly reminiscont 
of that of the two-dimensional ZN spin models and the four-dimensional ZN gauge theories 
and, quite naturally, constitutes a three-dimensional interpolating model. The possible 
relevance of this and related models to the Lifshitr point problem in certain helical 
magnetic and liquid crystal systems is briefly discussed. 

1. Introduction 

The model which is analysed in this paper, a theory of the dynamics of Z N  spins with 
four-body interactions defined on a face-centred-cubic lattice, is of interest both 
because of its possible relevance to experimentally accessible systems as well as its 
intriguing statistical properties. 

As we shall see, the model possesses three phases as a function of p, the inverse 
temperature, for N a 5 .  Numerical and analytical results presented below indicate 
that the intermediate phase is a 'soft' massless phase in which there is no long-range 
order, somewhat similar to the low-temperature phase of the ordinary two-dimensional 
XY model. In studies of the phase structure of various three-dimensional liquid-crystal 
and helical-magnetic systems, it has been suggested that the helical-ferromagnetic 
phase boundary should be a kind of critical boundary with no long-range order. It 
is therefore quite plausible that the middle phase of our model may describe the 
boundary of some such system. Moreover, if this is the case, the high-temperature 
phase transition in our model, separating the disordered and intermediate phases, will 
then correspond to the Lifshitz point of the physical system in question. Our analysis 
of the model has not as yet determined whether or not this continuous transition is 
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an infinite-order (Kosterlitz-Thouless) one. However, in this context, it should be 
noted that the model of Amit et a1 (1982), which shares many of the statistical 
properties of our theory, does have Kosterlitz-Thouless transitions. 

Aside from the physical relevance of our model, which will be discussed further 
below, its fascinating and unusual statistical features mark it as a system worth studying 
in its own right. 

First, the theory is self-dual (more precisely, its Villain version is self-dual). In 
this respect, it is precisely analogous to the two-dimensional clock models and the 
four-dimensional Z N  gauge theories. This property is also shared by the two- 
dimensional model of three-body Z N  interactions on a triangular lattice (Alcaraz and 
Jacobs, 1982, Alcaraz et a1 1982). In addition, our FCC model, like all of these other 
Z N  systems, has a single order-disorder transition for N 4. When N > 4, the nature 
of the three phases is again very similar in all these theories, namely, a disordered 
high-temperature phase, an intermediate massless phase with no long-range order 
and an ordered low-temperature phase. 

The spatial symmetries of our model are also quite interesting in that they are 
neither global nor local. As we shall show, the Hamiltonian of our theory (or, viewed 
as a field theory, its Lagrangian) is invariant under a rotation of all the spins lying in 
a single principal plane of the FCC lattice. Therefore, to make a complete ‘gauge 
choice’ in this model, one must fix the orientation of one spin on each of the planes 
of the lattice, which means that one has the freedom of making a gauge choice on a 
one-dimensional subspace of our lattice. When we consider further the similarity in 
the duality properties and phase structure of our theory with those of the class of Z N  
models mentioned above, we note that the semi-local (or semi-global) nature of the 
symmetry marks the model as a natural candidate for a three-dimensional theory 
which interpolates between these two- and four-dimensional systems?. 

Another important aspect of our model is that, like other Abelian lattice systems, 
it can be expressed in terms of a set of variables which are related to the topological 
excitations of the theory. In particular, the U(1) version of our model can be written 
in terms of a set of point charges interacting through a long-range anisotropic logarith- 
mic potential. (Actually, the potential is an involved function of products of logarithms 
of the separation. Throughout the paper, though, for convenience we shall simply 
use the term ‘logarithmic’ to describe this behaviour.) The allowed configurations of 
charges arise from the imposition of unusual, non-local neutrality conditions. Roughly 
speaking, only those configurations contribute which are neutral on certain two- 
dimensional surfaces in our three-dimensional lattice. As in the two-dimensional 
vector Potts models, one can understand the phase transitions in our model as arising 
from the condensation of topological excitations. In view of the above discussion 
concerning the likely relevance of our model to Lifshitz point problems, the logarithmic 
gas representation of the theory should prove quite useful. 

In the next section we shall define the model and discuss in detail its symmetries 
and duality properties. The logarithmic gas representation is also derived in this 
section. In § 3 we report the results of our Monte Carlo simulations of the model 
and discuss the conclusions which are drawn from this analysis. In this context it 
should be mentioned that the model displays unusually strong finite-size effects. A 
detailed description of the reasons behind these effects has been given (Alcaraz er ai 
+ It is quite reasonable to suppose that a non-Abelian generalisation of our theory would also interpolate 
between the corresponding two- and four-dimensional models with the same symmetry group. This 
interesting possibility deserves further study. 



Phase properties of the ZN-symmetric quartet FCC model 177 

1982b) and here we only mention that particular care is needed when dealing with the 
finite system. In 0 4  we summarise and discuss our results. Finally, we include an 
appendix in which n-point correlation inequalities are derived and then used in 
conjunction with an argument similar to one used in studies of other ZN models 
(Elitzur et a1 1979, Amit et a1 1982) to argue that the Villain version of our theory 
has three phases for large enough N. The intermediate phase appearing between 
ordered and disordered ferromagnetic phases has no long-range order and is massless 
(i.e., has an infinite correlation length). 

2. The FCC Zwsymmetric quartet model 

2.1. Definition of the model 

Consider an FCC lattice. On each site place a Z N  spin S ( n )  = exp(2viq,,/N), q. = 
0, 1, . . . , N - 1 ( n  labels a lattice site). Allow the spins to interact four at a time so 
that the Hamiltonian is given by 

H = t C [ 1 - f{s (n )s[n + $e (2 + y* ) ] ~ + [ n  + $e (2 + i ) ] ~ + [ n  + t e  (y* + ?)I + HC}] (2.1) 
n,e 

where e takes the values *1 and the sum over n runs over all lattice sites. 
The partition function is then 

N-1 

Z =  1 exp(-@H). 

An equivalent way of writing H is 
{q =OI  

H = C ( 1 - c o s h 4 q )  
I 

where the sum is now over all elementary tetrahedra of the lattice consisting of one 
corner site in a cubic lattice and the centres of the three faces of the cube which share 
that site, and where 

h4q =(257/N)(q1+q*-q3-q4) (2.4) 

In equation (2.4) we choose q1 and q 2  to be the sites of the tetrahedron which lie on 
the same x-y plane, while q 3  and q4 are displaced from these in the z direction. This 
choice is purely conventional, of course, and any other choice defines an equivalent 
model. 

We shall generally be fairly cavalier about boundary conditions (except in 0 3) 
since we shall always be primarily interested in the infinite-volume limit. However, 
when necessary and unless otherwise stated, periodic toroidal boundary conditions 
may be assumed. 

2.1. Symmetries of the model 

The Hamiltonian (2.1) has two kinds of spatial symmetries. First, it has a standard 
global symmetry in that it is invariant under a simultaneous Z, rotation of all spins, 
S ( n ) + S ( n )  e x p ( i ( 2 ~ p ) / N ) ,  p = 0, 1, . . . , N - 1. In addition, however, it has an 
unusual ‘planar’ symmetry which is neither global nor local (as in an ordinary gauge 
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theory), but is somewhere in between. The theory is invariant under a uniform rotation 
of all spins lying in one principal (x, z )  or (y,  z )  plane of the lattice. Furthermore, it 
is also invariant if all spins in a principal (x, y )  plane undergo a staggered rotation: 
that is, if S(n) is rotated by exp( i2~p /N) ,  then its four nearest neighbours (in the 
same (x, y )  plane) are rotated by exp(- i2~p/N) .  Clearly, there is nothing intrinsically 
special about the z direction. The asymmetry is only due to our choice of signs in 
(2.4), which choice was made to ensure that the theory is invariant under a global, 
uniform Z N  rotation. Indeed, we could just as well have chosen all signs positive, in 
which case the global symmetry would become staggered but all three directions would 
be equivalent. Because of this rich symmetry structure, whenever the symmetry is 
not broken (spontaneously or otherwise) the simplest non-vanishing correlation func- 
tions must involve four points, as can be easily demonstrated. Contact between our 
model with its unusual planar symmetries and theories with more usual local or global 
symmetries will be discussed further in § 4. 

2.3. Duality properties and the logarithmic gas representation 

The model defined above for N = 2 , 3  and 4 is self-dual. For N 3 5 it is essentially 
self-dual in that the dual theory is again a theory on an FCC lattice with four-body 
interactions defined on the elementary tetrahedra, just as in (2.1). For N 2 5, however, 
higher harmonic interactions such as cos(kA4#) with k an integer less than or equal 
to N/2 are generated. A4# is the dual analogue of h4q given in (2.4). Because of 
this, though, a self-dual model which generalises (2.3) can be given through 

(2.5) 

where A is the integer part of N/2. The dual of this model will have a Hamiltonian 
of the same form as (2.5) in which the couplings are some functions of the Jk. This 
situation is precisely analogous to that of the d = 2 ZN spin systems, the d = 4 ZN 
gauge theory and certain other Z N  models in various dimensions (Cardy 1980, Alcaraz 
and Koberle 1980, 1981, Savit 1981, Amit et a1 1982, Alcaraz and Jacobs 1982). 
Also analogous to the situation encountered in those theories is the fact that the 
periodic Gaussian, or Villain version of our model (to be introduced below) is self-dual 
for all N. It is believed that the Villain version of our model belongs to the same 
universality class as (2.1). 

The procedure for constructing the dual form of our theory is entirely analogous 
to that used for other similar models which already exist in the literature (see, for 
example, Savit 1980 and references therein) so we will be very brief. Moreover, for 
simplicity we shall explicitly deal with the Villain form of our model given in equation 
(2.6) below instead of the cosine model of equation (2.1). (Note, however, that the 
Monte Carlo analysis of the next section was done with the Hamiltonian of equation 
(2.1).) On the way we shall encounter a very interesting charged logarithmic gas 
representation of the model which is also valid for (2.1) although in a more complicated 
form. 

The partition function for the Villain form of (2.1) can be written as 
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where the sum in the exponent is over all elementary tetrahedra, A4q is given in (2.4) 
and {l ,}  is a set of integers, one member of which is associated with each tetrahedron. 
The sum over { I , }  reinstates the periodicity which is lost in a simple quadratic, spin-wave 
approximation to  (2.1). For convenience, the sum over {q} has been extended from 
--CC to +a, which produces a (harmless) multiplicative infinity in (2.6). 

Using the Poisson summation formula and introducing a set of integer-valued 
variables, { p } ,  one p per lattice site as well as a set of Fourier conjugate variables 
{T,}, one T, per tetrahedron, (2.6) can be written as 

2 = E f 
I n 

P CO 

Dq exp( -5 (A4q - 2x1,)’ +E 27rip,q, 
U,) ( p = - m )  --CD 

where we have dropped irrelevant overall numerical factors, The second term inside 
the square brackets in (2.7) is integrated by parts, changing the exponent into 

where a ,  is the linear combination of the eight T ’ S  associated with the eight tetrahedra 
sharing the site n, namely, 

the three subscripts define the orientation of the tetrahedron from site n ; e.g., T+-+ 

corresponds to the tetrahedron which is oriented in the +x, -y, + z  direction from site 
n. (The right-hand side of (2.9) actually represents the action of the operator dual 
to A, on the 7’s.) 

Doing the integrations over the q, and dropping overall constant factors leads to 

(2.10) 

The constraints imposed by the Dirac &functions in (2.10) can be satisfied by introduc- 
ing a new continuous field (5 at each site of the lattice and writing 

where M,  is an integer. The 4,, are associated with the corners of the tetrahedron t 
and the linear combination of 4’s in (2.11) is the same as that of q’s in (2.4). If we 
allow M,  to run independently over all integers we will commit an overcounting error. 
In principle, a ‘gauge’ restriction should be imposed on the allowed set of values M,  
can take in (2.11). However, the overcounting is uniform and harmless and we shall 
ignore this subtlety here. For a further discussion of this point see Savit (1980) and 
references therein. 

Up to certain possible (for the present purpose, unimportant) redefinitions of 
variables (2.11) is necessary and sufficient to satisfy the constraints in (2.10). 
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Inserting (2.11) into (2.10), replacing the integral over T~ by an integral over 4 
and a sum over M,  leads to 

where we have performed an integration by parts in the exponent. In (2.12) the m, 
are linear combinations of the I,. The functional form of m n ( l c )  is identical to that of 

We can now use (2.12) either to demonstrate the self-duality of the theory or to 
construct the logarithmic-gas representation. Self-duality is obtained immediately by 
using the Poisson summation formula in (2.12) to perform the sum over {m}. This 
turns the integral over g5 into a discrete sum over integers to give, up to overall 
field-independent factors, 

given in (2.9). 

(2.13) 

which is the same as (2.6) but with p replaced by p' =N2/4.rr2p. Note that, in (2.13), 
the dual FCC lattice is the same as the original one (i.e., not displaced). Also, as we 
mentioned at the beginning of this section, we have chosen to deal with the periodic 
Gaussian approximation to our theory only for simplicity. Indeed, a procedure entirely 
analogous to that used in deriving (2.13) can be applied to (2.3) or (2.5). When this 
is done, one finds that the properties of these theories under duality are exactly the 
same as those of the class of two- and four-dimensional ZN models mentioned 
previously, Therefore, all conclusions which follow from the duality properties of 
those models can be drawn for our theory as well. In particular, we find that for 
N = 2, 3 and 4 the theory given by (2.3) is self-dual. Therefore, if these models have 
a unique phase transition, this must occur at the self-dual point p = p'. The numerical 
results of the following section indicate strongly that this is indeed the case. For N >4 
the model (2.3) is not self-dual, but we expect that this theory is rather similar to its 
Villain version, (2.6), which is self-dual. For all N, the self-dual point for (2.6) is at 
p = p' = N/27r. In the following section we show that the theory given by (2.3) has a 
phase transition at a temperature which soon becomes essentially independent of N 
as N grows. If (2.3) and (2.6) describe very similar theories, one would therefore 
expect a second transition for the larger-N models at an inverse temperature which 
grows like N2. This is precisely what our Monte Carlo analysis shows. 

To generate a logarithmic gas representation for the model we return to (2.12) 
and integrate over d instead of summing over m. If we do that, we will generate a 
theory with long-range interactions between two types of charges; one associated with 
the m's and the other with the M's. This representation will be analogous to the 
double Coulomb gas representation for the d = 2 Z N  spin models (Kadanoff 1978). 
Alternatively, one could attempt to transform (2.12) into a form analogous to the 
strings-plus-vortices picture of the d = 2 ZN spin models (Einhorn et a1 1980). For 
our purposes, however, it is sufficient to examine the N + 03 limit of (2.6) and show 
that this U(1) theory can be written as a three-dimensional logarithmic gas. The 
modifications arising from finite-N effects can be addressed in ways analogous to 
those used for the d = 2 vector Potts models. 
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In the N + CO limit one can write (2.12) as 

with 

N L 4 / 2 ~ = 4 1 + 4 2 - 4 3 - 4 4 .  

In momentum space, the exponent in (2.14) takes the form 

(2.14) 

(2.15a) 

where 

~ ( k ) = 6 4 [ 1 + ~ 0 ~ i J Z k ,  COS~JZ ~ , - c o s ~ J Z ~ ; ( C O S ~ J Z ~ , + C O S ~ J Z ~ , ) ]  (2.15b) 

4" =- d3k exp(ik . n ) v ( k )  (2.15c, d )  ,,.L ( k )  = 1 m,, exp(-ik n ) 

with n=647r3.  The k integrations are over the first Brillouin zone. One can now 
carry out formally the Gaussian integrals in (2.14) to obtain 

n 0 '1  

(2.16) 

where 2, is the dual spin-wave part of (2.14) ((2.14) when all m, = O ) .  Since D ( k )  
vanishes for a set of points within the Brillouin zone, (2.16) is not well defined as it 
stands. The singularities occur at the points 

k, = O  k,  = *JZ, Vk, E B  ( 2 . 1 7 ~ )  

k, = O  k, = 4 2 7 7  Vk, E B  (2.17b) 
- 

k Z  = O  k, = O  Vk, E B 

k, = O  k, = O  Vk, E B 

( 2 . 1 7 ~ )  

(2.17d) 

where B is the interval ( - h n - ,  4 2 ~ ) .  The lines of singularities given in ( 2 . 1 7 ~ )  
and (2.17b) occur at the edges of the Brillouin zone and are hence shared by the 
neighbouring zones, whereas ( 2 . 1 7 ~ )  and (2.17d) are inside the Brillouin zone. This 
fact must be considered when evaluating the contributions of these poles to (2.16). 
The conditions (2.17) are simply momentum-space expressions of the three semi- 
global planar symmetries described earlier. Because D ( k )  vanishes at these points, 
the contribution to (2.16) from a given configuration of m's will vanish unless the 
configuration satisfies certain neutrality conditions. From (2.16) one easily sees that 
the statements given in (2.17) imply, respectively, the following conditions on the m's: 

1 exp(ik,n,)m, = 0 Vk, 
n 

1 exp(ik,n,)m, = 0 Vk, 
n 

( 2 . 1 8 ~ )  

(2.18b) 

1 exp(ik,n,) exp(im,)m, = 0 Vk, ( 2 . 1 8 ~ )  

1 exp(ik,n,) exp(im,  )mn = 0 Vk, (2.18d) 

n 

n 
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( 2 . 1 8 ~ )  ((2.186)) requires that the configurations of m’s be neutral on all principal 
(x, z )  ( ( y ,  z ) )  planes, ( 2 . 1 8 ~ )  implies that charges on any principal (x, y )  plane, when 
weighted with spatially alternating signs, must add up to zero. Because of the spatial 
structure of the FCC lattice, ( 2 . 1 8 ~ )  and (2.18d) are actually equivalent. (Of course, 
these conditions also imply global neutrality of the charges in the whole space.) 

One can ensure that the constraints (2.18) are satisfied by choosing appropriate 
boundary conditions. In the context of the Villain version of the model such boundary 
conditions are easy to establish since the m’s can be written directly in terms of the 
I,’s of (2.6). (Similar conditions can also be imposed for the cosine model (2.1), but 
the discussion is somewhat more involved.) One rather natural set of such boundary 
conditions can be constructed with the elementary tetrahedra which bound our FCC 

lattice. We define periodic and antiperiodic boundary conditions on the 1’s  in the 
usual fashion. The constraints (2.18) will then be satisfied if the 1 ’s  satisfy periodic 
boundary conditions in  the z direction and antiperiodic ones in both the x and y 
directions. By choosing a sequence of such lattices and taking the limit as the lattice 
size goes to infinity we will be able to arrive at a sensibly defined infinite system with 
the partition function (2.16). (Note that, a priori, one does not generally know whether 
another sequence of finite systems with different boundary conditions will lead to an 
infinite system with the same thermodynamics. However, experience with other related 
systems suggests that for the purposes of the present discussion, we may assume that 
the thermodynamics of the infinite system are relatively insensitive to a wide variety 
of boundary conditions.) 

The close analogy with the situation encountered in the d = 2 X Y  model is 
apparent: there the global symmetry gives rise to an energetic constraint of overall 
fixed total charge in the infinite system. For simple periodic boundary conditions the 
total charge is zero and the boundary conditions simply reflect the homotopy statement 
that the total winding number is zero. (This is true for T<T,.  For T > T ,  the 
discussion is somewhat more complicated.) In our model the situation is similar except 
that the symmetries are more complicated and, hence, so are the analogous constraints 
on the charge distribution given by (2.181, implying a more complicated set of boundary 
conditions. In view of the similarity of our theory to the d = 2 Z,v models, it is 
noteworthy that the conditions (2.18) are defined on two-dimensional sublattices. 

If conditions (2.18) are enforced, the coefficients of the divergent terms in the 
exponent of (2.16) will be zero and we can write 

(2.19) 

where the primed sum indicates that only those configurations satisfying (2.18) are 
included. One should bear in mind that (2.19), as it stands, is in general ill-defined. 
The reason for this is that, in principle, the 4 integrals in (2.14) produce formal 
divergences due to the semi-local symmetry of the theory. If this effect is superficially 
ignored we find that the divergences in G,, (which enforce (2.18)) lead to singularities 
in Zo. The proper way to perform the integrations over C+3 in (2.14) is first to fix a 
gauge (e.g. to set all the 4’s along some line in the z direction equal to zero), thus 
rendering 20 well defined. The m’s on this subspace will not appear in (2.19) and a 
modified set of conditions will apply to the sum over { m } .  Depending on the gauge 
choice, G,, will also have a different form. However, the contributions to Z from 
gauge-invariant configurations of charges-those constructed out of gauge-invariant 
configurations on elementary tetrahedra-will not depend on the choice of gauge. 
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This is entirely analogous to the situation occurring in a normal gauge theory, where 
a choice of gauge is usually necessary to make the theory completely well defined, 
but the calculation of gauge-invariant quantities is generally insensitive to the precise 
method used to deal with the gauge redundancy. 

The preceding discussion notwithstanding, it is however true that in our model it 
is in principle technically possible to compute G,, without fixing the gauge because 
the symmetries involved are not truly local. In this respect our theory is more like a 
gauge theory in which one has chosen, say, an axial gauge and has not fixed the 
residual gauge symmetry. In a given gauge, G,, can be thought of, loosely, as corres- 
ponding to a simple two-body potential; this is, however, a strictly correct interpreta- 
tion only when restricted to the gauge-invariant subspace of configurations. With all 
of this in mind, one could proceed in principle to carry out the integrations over k in 
(2.16) to arrive at an expression for G,,. But for arbitrary charge separation, the 
integrals involved are prohibitively difficult and one must content oneself with 
asymptotic expressions. After some algebra, we find 
G (0, r 1 = 2 In rx In r, + [exptim, ) + exp(irr, ) ]  In rz (In ri + In r, ) r, >> 1. (2.20) 

The relevant P-dependence of In Zo in the Villain approximation is simply that of 
a usual Gaussian spin-wave. 

When used in conjunction with configurations constructed from elementary quar- 
tets of charges (four charges, two positive and two negative, situated at the corners 
of an elementary tetrahedron) we see from (2.20) that the potential between two 
charges grows as the logarithm of the distance when the charges are separated along 
a given principal axis, but anisotropically like the square of the logarithm of the 
distance when they separate along any other direction. Recall, however, that all 
allowed configurations can be built by superposing elementary quartets of charges, 
and with this in mind, (2.20) gives an accurate description of the asymptotic dynamics 
of these elementary charges. We shall refer to the representation (2.19) again in 4 4 
when we discuss the nature of the phase transitions in our theory. 

3. Numerical analysis of the models 

In the Monte Carlo analysis of our model we have used, for the most part, the standard 
Metropolis updating algorithm (Metropolis e? a1 1953). In certain instances, where 
the procedure becomes inefficient due to the existence of a large number of degenerate 
configurations, a variant of the heat-bath algorithm of Creutz et a1 (1979a) was used. 

The unusually large finite-size effects displayed by the model (Alcaraz et a1 1982b) 
force one to be particularly careful in drawing conclusions from a study of finite 
lattices. We have thus used different size lattices to check our results whenever this 
was indicated. 

For a rough, overall view of the phase structure of our theory we have performed 
thermal cycles in which the average energy per spin, as well as the order parameter, 
were measured. In such simulations an initial state with all spins set at the same value 
is heated by decreasing the inverse temperature from some value p = PO in small steps 
until P = 0 and then reversing the procedure until p = P o .  A single Monte Carlo 
iteration of the entire system is performed at each step and lattice averages of interest 
are recorded. If the starting temperature is sufficiently small, the initial state will be 
close to equilibrium, as will, in general, succeeding configurations. However, near a 
phase transition, the relaxation time increases and, hence, so will the difference 
between the measured average energy, E, and its equilibrium value at that temperature. 
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This effect will produce hysteresis-like loops in a graph of E @ ) ,  giving a rough 
measure of the critical temperatures. Of course, spurious relaxation effects must be 
weeded out to determine the existence of a phase transition from this analysis. This 
can be done in any of a number of ways. We have chosen to use either a variant of 
the heat bath algorithm in the regions of hysteresis or an improved Metropolis 
algorithm. In these updating procedures a new spin is chosen or rejected by testing 
the entire group (heat bath algorithm) or part of it (improved Metropolis) before going 
to the next spin; thus ensuring that a local minimum is obtained at each update. 
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0 8  

0 6  
E 

P 

Figure l (a) -  (L). Thermal cycles for the N = 2 - 9 models in which the average energy 
(per spin) is plotted versus the inverse temperature. The full line for small p represents 
the first term in the high-temperature expansion ( E  = 1 - p for N = 2, E = 1 - p / 2  for all 
others). The other full line (for the N = 7, 8, 9 models) is the spin-wave approximation 
E = 1/46, A hint of an intermediate phase appears when N = 6 and becomes evident for 
larger N .  

Examples of thermal cycles are shown in figure 1 for the groups Z2, Z3, Z4, Zs, 
Z6, Z,, Z8 and Z9. The first three cases display what seems to be a single, pronounced 
transition. This is confirmed by further analysis described below which shows also 
that these transitions are all strongly first-order. The last four examples are dramati- 
cally different, A three-phase structure is apparent in Zg and becomes more evident 
as the order of the group increases. The fourth figure does not show enough resolution 
to decide the case of the marginal Z5 model. Consistent with general arguments, the 
high-temperature transition for N b 5 rapidly approaches a stationary value of p = 1 
whereas the low-temperature transition moves with N towards increasing p. Further 
analysis of the N-dependence of this second critical point shows that it scales with 
the inverse gap, as it should. We find that we can fit the low-temperature phase 
transition with the rather natural form 

pt.' = y/[ l  -cos(27r/Nj] (3.1) 
where the constant y = 0.63. There is little point in determining its value with precision. 
Thus the pattern seems to be exactly analogous to that seen in the globally symmetric 
two-dimensional ZN clock models (Elitzur et a1 1979, Horn et a1 1979, Ukawa et a1 
1980, Cardy 1980, Alcaraz and Koberle 1980, 1981, Einhorn et a1 1980, Savit 1980), 
the two-dimensional semi-globally-symmetric triplet ZN model (Alcaraz and Jacobs 
1982), the three-dimensional semi-locally-symmetric model of Amit et a1 (1982), as 
well as to the locally-symmetric, four-dimensional Z N  gauge theory (Creutz et a1 
1979b). 

That our model for N 6 4 undergoes a single, first-order transition can be seen by 
the following argument. From the results of the previous section we know that these 
models are self-dual. Using a technique described below we determined the critical 
temperature and found it to agrce (with an accuracy of *0.0025 for p )  with the 
self-dual points p(Z2) = 4 ln(1 +J2) (see, however, Alcaraz et a1 1982b), p(Z3) = 
? In(1 + 43) and p (Z4) = 2p ( 2 2 )  = ln(1 + J2) ,  thus showing that the transition is 
unique. To show that it is first-order we ran long simulations at the self-dual point 
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with initial states which were totally ordered or totally disordered. After a very short 
relaxation time (of the order of 20 Metropolis iterations) each of these initial configur- 
ations reached equilibrium at two clearly distinct values of the average energy. This 
demonstrates the existence of a (large) latent heat. To minimise the effects of spurious 
metastable states we performed these simulations on systems with as few as 500 spins. 
As an example, the results of these simulations performed on the Zq model are shown 
in figure 2. In sharp contrast, figure 3 shows the case of the Z6 model, run at the 
high-temperature transition, where the two initial configurations are seen to evolve 
rapidly into a single state, clear evidence of a continuous transition. In this context, 
it should be noted that, because of the large spatial symmetry of the theory, conver- 
gence of the standard Metropolis algorithm is extremely slow in the regions of 
maximum variation of the internal energy. Because of this, both the heat-bath 
algorithm, as well as different mixed initial configurations of the type described below, 
were used to check our conclusions. 

08 lo, 

0 2. 
t x10' 

E 

0 2 4 6 8 10. 
t X I O '  

Figure 2. Evolution of an ordered (lower points) 
and a disordered (upper points) state at the self-dual 
point of the Z4 model. The apparent stability of 
both states indicates a first-order transition. 

Figure 3. Time evolution of an ordered state and a 
disordered state at the high-temperature transition 
of the 2 6  model. The apparent absence of a latent 
heat indicates a continuous transition. 

To determine the critical temperature of first-order transitions we used a technique 
developed in the study of lattice gauge models (Creutz et a1 1979a, b). In this method, 
one studies the evolution of states in which part of the lattice is initialised to a frozen 
configuration and the remaining spins are set to random values. Monte Carlo simula- 
tions are then performed at fixed temperatures in the transition region (as determined, 
for example, from a thermal cycle). When the temperature is not the critical one, 
one notices a rapid initial relaxation of the system to a state with average energy 
between the two values, E ,  and E-, corresponding to the energies of the two coexisting 
stable phases at the critical point. This is followed by a linear drift in E ( t )  as the 
boundary between the two regions of the lattice shifts until the stable phase occupies 
the whole system. At the critical temperature, however, both phases are stable and 
no drift is observed. This procedure is highly efficient because the interaction between 
the two regions of the lattice at the boundary greatly reduces the lifetime of metastable 
states as the system is supercooled or superheated. As an example, the results of this 
kind of simulation for the Z3 model are shown in figure 4. 
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The intermediate phase observed for N 2 5 is most likely a soft phase in which 
correlation functions have a power-law decay at large distances and there is no 
long-range order. As evidence for this contention we first note that a massless, 
spin-wave approximation to the partition function, gives E = 1/4p for large p. The 
fit of E @ )  in this phase to the spin-wave approximation is excellent, indicating strongly 
the existence of massless spin-wave excitations. This is shown with the thermal cycles 
for N = 7, 8 and 9 in figure 1 and for the ZI7 model in figure 5 .  

t X I 0 2  

Figure 4. Evolution of a mixed state (discussed in 
the text) for temperatures above and below the 
self-dual point of the Z 3  model, p = 0.67003 . . .. 
Starting from the lowest set of points, the inverse 
temperatures are 0.65, 0.66, 0.67, 0.68 and 0.69. 

I 
0 1 2 3 4 

P 
Figure 5. Thermal cycle for the 2 1 7  model. Solid 
lines represent the first term in the high-temperature 
series, E = 1 -6 /2 ,  and the spin-wave approxima- 
tion E = 1/46. The close agreement between the 
data and the Gaussian approximation at intermedi- 
ate temperatures is evidence that this phase is mass- 
less. Note that the second, low-temperature transi- 
tion occurs at a larger value of 6 than is shown on 
this graph. 

The existence of spin waves can also be seen by a feature which is peculiar to the 
standard local Monte Carlo procedure. Consider slowly cooling an initial state, which 
is completely disordered, from p = 0 through the transition at p = 1. In either a 
disordered or a spin-wave phase the order parameter-the average spin-should 
vanish, because all values of the allowed angles between 0 and 27r are assumed. 
However, the local distribution of values for the angle in a disordered phase is very 
different from that expected for a spia-wave phase. Whereas in the former case the 
neighbours of a given spin assume, with high probability, any value in the group, in 
the latter they will, on the average, take values close to that of the spin being tested 
(modulo gauge-like fluctuations) since, in such a phase, long-wavelength fluctuations 
predominate. Thus, in such a simulation, the existence of spin waves should be 
signalled by a quench in the spin fluctuations over small temperature intervals as the 
temperature is lowered past the critical point. That this effect indeed occurs is seen 
dramatically in figure 6. 

More numerical work is needed to determine with precision whether or not N = 5 
represents the bifurcating point. 

4. Summary and conclusions 

In this section we shall recapitulate our findings and comment on the relationship of 
our model to other statistical models and discuss possible physical realisations. 
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Figure 6. Quench in the fluctuations of the average angle as the system is cooled past 
the U i l )  transition at p = 1 (the U(1) model is well approximated at these temperatures 
by the Z29 model, shown here). As discussed in the text, this effect is further evidence 
for the existence of spin-wave excitations in the low-temperature phase of the U i l )  model. 

To summarise, we have shown that the ZWsymmetric quartet model defined on 
an FCC lattice has an unusual symmetry which is neither local nor global, but is 
something in between. In this respect the model naturally interpolates between the 
d = 2 globally-symmetric ZN spin models and the d = 4 locally-symmetric Z N  gauge 
theories. In addition, like these models, our model is essentially self-dual. That is, 
the periodic Gaussian form of the model is self-dual, while the dual of the cosine 
form of the model is also a ZN symmetric quartet model on an FCC lattice but with 
somewhat more complicated interactions. However, as we have discussed, a gen- 
eralised version of our model, (2 .5 ) ,  which contains all these higher harmonics is 
self-dual. 

From our numerical analysis and experience with related models, we expect that 
there will be a low-temperature phase in the U(1) theory with algebraic decay of 
correlation functions. Supposing this to be the case, we show in the appendix that 
the periodic Gaussian version of our model must, for N sufficiently large, but finite, 
have at least three phases: a high-temperature disordered phase, an intermediate 
massless phase with no long-range order, and a low-temperature ordered phase. Since 
we expect the cosine model to be in the same universality class, this model should 
also have at least three phases for large enough finite N,  which is in agreement with 
our numerical results. 

From (2.20) and our numerical results, one can argue that there is no low- 
temperature, ordered phase in the N+co (U(1)) model. On the other hand, the 
low-temperature correlations of the U(1) model do not have the exponential decay 
characteristic of the disordered, high-temperature states, so the N + 00 model should 
have one phase transition at some finite inverse temperature Po (this is, of course, 
consistent with the analysis of the past section). 

The U(1) version of the model also has an interesting representation as a three- 
dimensional gas of charges interacting through a logarithmic potential. Because of 
the theory’s unusual symmetries, these charges are subject to semi-local neutrality 
constraints along the principal planes of the lattice as expressed in (2.18). Alterna- 
tively, we may think of the allowed configurations of charges as being superpositions 
of elementary charge quartets as discussed in $ 2 .  Insofar as the topological excitations 
are point-like, the theory is more reminiscent of the d = 2 X Y  model whose topological 
excitations are point-like vortices, than of the d = 4 gauge theory whose topological 
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excitations are strings. However, it appears likely to us that an alternative description 
of our model in terms of string-like variables is possible. Indeed, this is what one 
would expect from simple homotopy arguments (which, however, must be gingerly 
applied to a theory with an unusual symmetry such as ours). A more complete 
understanding of our model would certainly be achieved if this question were resolved. 

Our numerical tesults fully support the picture that our model has three phases 
for N a 5 with an intermediate massless phase, and two phases, separated by first-order 
transitions, for N = 2, 3 and 4. We have not determined yet whether or not the 
continuous transitions observed for the higher-N models are of the Kosterlitz-Thouless 
(KT) type (infinite order), In this connection note, however, that whereas the d = 2 
X Y  model does have a KT transition, the transition, in the d = 4 U( 1) model is second 
order (Lautrup and Nauenberg 1980, Bhanot 1981). It would be most desirable to 
perform a Monte Carlo renormalisation group analysis or to apply arguments of the 
type employed by Grinstein (1980) and Amit er a1 (1982) to help decide this question. 

Our model is also closely related to other three-dimensional models of statistical 
interest. First, following the analysis by Baxter and Pierce (1981) of the 2 2  version, 
a simple extension of their arguments shows that the ZN model can be mapped onto 
a three-dimensional N4-vertex, N colour model on a simple cubic lattice. Next, our 
theory is closely related to the model of Amit et a1 (1981) which has a similar phase 
structure and a logarithmic propagator (which, however, differs in detail from (2.20)). 
We have also considered other ZN quartet models on different three-dimensional 
lattices. We have analysed a ZN quartet model on an HCP lattice (the Z2 version of 
which has been studied by Liebmann (1982)) and found it to have the same duality 
properties as our model. Further, a preliminary numerical analysis indicates that it 
has a very similar phase structure. Finally, we note that we may define a model with 
four-body interactions on a BCC lattice. A little thought shows that such a theory is 
just a rotated, elongated version of our FCC model. 

We close this section with a brief comment about possible physical realisations of 
the model studied in this paper. As we mentioned in the Introduction, the possible 
relevance of our model to the Lifshitz-point problem in various systems is quite 
exciting. To understand whether a given physical system can be described by a model 
such as ours, one should first determine that the symmetries and dimensionality of 
the model are appropriate for a description of the system. For the case in point, for 
example, it is known that the Lifshitz point in the smectic A-smectic C-nematic 
liquid-crystal system can be described by d = 3 theory with a U(1) symmetry (par- 
ticularly as the Lifshitz point is approached along the A-C phase boundary). Now, 
we have several d = 3 U(1) theories without long-range order which are a priori 
candidates for describing the A-C phase boundary and the Lifshitz point. These 
models differ primarily in the precise nature of their symmetry properties and in the 
detailed form of their propagators. A spin-wave analysis of the physical system under 
consideration will indicate what form of a logarithmic potential is most appropriate 
for its description. It is quite likely that such an analysis would permit us to find a 
model of the type we have discussed here which is relevant to the physical system 
under consideration and would lead to a prediction of the nature of its Lifshitz point. 
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Appendix 

In this appendix we prove the following inequalities for the m-point, equal temperature 
correlation functions for the order ( e )  and disorder ( 4 )  variables of the Villain version 
of the model which will lead to an argument for the existence of three phases for 
large enough N : 

To apply these inequalities in the study of the phase structure of our model first 
note that if, as we expect, there is a massless low-temperature phase in the U ( l )  theory, 
then the above inequalities and the self-duality of the Villain version of our model 
(Elitzur et a1 1979) can be used to show that for N >27rp: the ZN models must have 
three phases. Moreover, we expect that the intermediate phase of the Z N  
models has qualitatively the same properties as the massless low-temperature phase 
of the U(1) model. In particular, the intermediate phase of the ZN models should 
have no long-range order. Of course, it should be clear that although ( A l )  and (A2) 
are valid whatever the distribution of the m-points might be, unless this set of points 
is constructed from ZN-symmetric distributions (i.e., elementary tetrahedra) both sides 
of (Al )  and (A2) vanish and we learn nothing from the inequalities. Since we do not 
have an a priori estimate for 0; we cannot determine the critical value of N from 
these arguments. Our numerical data favours N ,  = 5 but further work is required to 
fix this value more precisely. 

To prove {Al )  and (A2) let us first define the m-point correlation function for the 
order variables 

e(x,) = 27rqn/N. 

We find, in the periodic Gaussian approximation, 

27ri 1 N - 1  

o ; = y  f exp( - f 1 ( A 4  - 2 ~ 1 ~ ) ~ )  e x p F  s n Q n  (A4) 

where Zx is given by (2 .6)  and 0. = Erel &. An entirely similar procedure to that 
used in deriving (2.10) from (2.6) leads to 

Z N  ( q , = O )  { I , = - " }  

1 1 "  13 

o:=p N { r  ,c --a} { M = - m )  c 1-1 n S J " ( M , ,  0 exp( - 2p 7 7:) ( ' 4 5 )  

where J n ( M )  = a n  +Qn +NM,  and an is given in (2.9). For the U ( l )  limit we likewise 
obtain 

Following Elitzur et a1 (1979) we define an interpolating correlation function 



Phase properties of the ZN-symmetric quartet FCC model 191 

where ZK is the numerator for Q = 0. It is trivial to see that, as H + 0, Oh+ 0 ; ( 1 ) ,  

whereas as H + m ,  O”,Oo”,. Therefore, we will prove (Al)  if we can show that 
a ~ g / a ~  3 o for all H > 0. 

Differentiating (A7) with respect to H we find 

where 1; = a n  +NML. 
Defining at each tetrahedron the variables 

p f ( n )  = ~ ~ ( n )  + 7 :  ( n )  

p i  (n) = ~ [ ( n  1 - T ;  (n  1 

p, =Mn + M b  p:, = M , - M b .  

and, at each site, 

We see that satisfying the constraints in (A8), Jn = 1; = 0 also implies that 

K ~ p ;  + Q, + N p ,  = p:’ +Q, +NpA = K ’ =  0 

where p? = at + a {, p ? ’  = at -a  i. Notice, however, that p f  and p i  ( f i n  and f i  A) are not 
independent since by (A9) ((A10)) they should have the same parity. To sum 
independently over p r  and p :  (as well as f i n  and p ; ) ,  we add a factor $1 + (-l)pc’p;] 
for each tetrahedron and a factor $1 + (-l)”n.’”A] for each site. This allows us to 
replace the sums over T( and M, by sums over p r  and pn to get 

x ~:[1+(-1)~+”],,[l+,-l)”+”’]. 
f n 

The sums over site and tetrahedron variables can be divided into sums over general 
subsets S and T such that the last two factors in ( A l l )  can be separated. This leads 
finally to 

thus proving (Al ) .  
To prove (A2), define 
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In the Villain approximation one can write 

where as 

Defining as before an interpolating function 

we will prove (A2) if we can show that aDk/dH S 0 for all H > 0. 
Differentiating (A16) we obtain 

This expression can be symmetrised with respect to primed and unprimed variables 
by noting that, since (A17) is antisymmetric under M + M ‘ ,  the last factor can be 
substituted by 

Inserting (A18) into (A17), defining sum and difference variables as in (A9) and 
(AlO), correcting for the parity loss and separating the sums as before, we see that 
(A17) can also be written as a square. However, the overall negative sign coming 
from (A18) implies aD’;/aH s 0 and hence proves (A2). 
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